|
|
初中数学论文:刍议数学课堂上的探究性学习 发布时间:2019-04-09 22:26:01
初中数学论文:刍议数学课堂上的探究性学习
张家港市凤凰中学 浦卫星
“探究性学习”是指学生在教师的指导下,通过自主合作探究,通过尝试、体验、实践,主动发现问题,解决问题,获取知识,形成能力的学习活动。它是着眼于发挥学生的潜能,着眼于发挥学生的个性,更注重知识的形成过程,注重学生的体验实践,注重学习方法的掌握和主体精神的培养。因此,它不仅能促进学生主体发展,而且也能提高教师教学水平,是提高教学质量的一种主要方式。
倡导探究性学习,引导学生经历知识的获取过程,是当前数学教学改革的重要内容。探究性学习把目标指向学生的创新能力、问题意识,以及关注现实、关注人类发展的意识和责任感的培养,而不仅仅是知识的传播和掌握。探究性学习强调“做中学”,力图通过学生“做”的主动探究过程,来培养他们的创新精神、动手能力和解决问题的能力。而立足于课堂,深入钻研教材,是数学课堂教学中实施探究性学习的基础。
下面是笔者从教近20年来,结合自己对新课程的理解和自己的课堂教学实践,谈一下自己对初中数学课堂上运用探究性学习的探索。
一、借助数学概念教学,实施探究性学习
概念的形成有一个从具体到表象到抽象的过程,学生获得概念的过程,是一个抽象概括的过程。对抽象数学概念的教学,更要关注概念的实际背景与形成过程,让学生体验一些熟知的实例,克服机械记忆概念的学习方式,经历知识的形成过程。比如函数概念,学生很难理解课本中给出的定义,教学中应选取具体事例,使学生体会函数能够反映实际事物的变化规律。如先让学生指出下列问题中哪些是变量,它们之间的关系用什么方式表达:①火车的速度是每小时60千米,在t小时内行过的路程是s千米;(S=Vt)②用表格给出的某水库的存水量与水深;③等腰三角形的顶角与一个底角;④由某一天气温变化的曲线所揭示的气温和时刻。然后让学生反复比较,得出各例中两个变量的本质属性:一个变量每取一个确定的值,另一个变量也相应地唯一确定一个值。再让学生自己举出函数的实例,辨别真假例子,抽象、概括出函数定义,至此学生能体会到函数“变”,但变化规律如何?教师要继续引导探究实际事例(如上例④),指导学生开展以下活动:①描点:根据表中的数据在平面直角坐标系中描出相应的点。②判断:判断各点的位置是否在同一直线上。③求解:在判断出这些点在同一直线上的情况下,由“两点确定一条直线”,求出一次函数的表达式。④验证:其余各点是否满足所求的一次函数表达式。
二、借助数学定理法则,实施探究性学习。
前人的知识对学生来说是全新的,学习应是一个再发现、再创造的过程,教师要引导学生置身于问题情境中,揭示知识背景,从数学家的废纸篓里寻找探究痕迹,让学生体验数学家们对一个新问题是如何去研究创造的,暴露思维过程,体验探索的真谛。如三角形内角和定理的教学,学生在小学时就知道把三个角剪下拼成一个平角,从而得出三角形内角和是180°(∠A+∠B+∠C=180°),但定理是要经过严密论证的,教师要引导学生探究这个拼的实质。学生的拼法大致有四种情形,教师让学生把拼的图形画下来,引导学生从拼法中探究证明的思路,自然地让学生接触到几何中添辅助线的问题,体会到添辅助线这一抽象的数学手段的来历和作用,同时定理的证明水到渠成。
三、借助数学定理法则,实施探究性学习
在初二几何“直角三角形全等的判定”中有这样一个例题:“求证:有一条直角边及斜边上的高线对应相等的两个直角三角形全等。”这个问题学生不难证明,但教师不能到此为止,可以引导学生进行多方面的探索。
探索1:能否将斜边上的高线改为斜边上的中线和对应角的角平分线?
探索2:能否把直角三角形改为一般三角形?
命题3:有两边及第三边上的高线对应相等的两个三角形全等。
让学生分组讨论,命题错误,因为三角形的形状不同,高线的位置不同。那么在什么条件下命题成立?学生自然提出下面三个命题。
命题①如果两个锐角三角形的两条边和第三边的高线对应相等,那么这两个三角形全等。
命题②如果两个直角三角形的两条边和第三边的高线对应相等,那么这两个三角形全等。
命题③如果两个钝角三角形的两条边和第三边的高线对应相等,那么这两个三角形全等。
大多数学生认为这样分类以后,三个命题肯定正确,对命题6教师引导学生画图探究,
可以发现下图中的ΔABC和ΔADC符合条件但结论不成立。
探索3:把命题③的高线变为中线或角平分线呢?
命题不允许在课堂上一一证明,有的可让学生在课外继续探究。课堂上教师可以利用初中生刨根问底的心理,让学生不断提出新问题,充分调动学生探究问题的积极性。
四、借助实际应用,实施探究性学习
教师应尽可能多提供一些现代生活中学生感兴趣的事例进行探究。如市场销售问题、办厂赢亏测算、股票风险投资、贷款利息计算、道路交通状况、环境资源调查、有奖销售讨论、体育比赛研究等等。如学习了函数和不等式的知识后,可以让学生计算有关经济问题。
例:有一批电脑,原销售价格为每台80000元,在甲、乙两家家电商场均有销售。甲商场的促销方法是:买一台的单价为7800元,买两台的单价为7600元,依此类推,每多买一台单价再减少200元,但每台单价不能低于4400元;乙商场一律都按原价打七五折销售。某校需购买一批此型号的电脑,请同学们帮学校算算,去哪家商场购买节约开支?
五、借助对实践性作业,实施探究性学习
如在学习平行线之间的距离处处相等的性质时,可以让学生这样探索:在方格纸上画两条互相平行的直线,在其中一条直线上任取若干个点,过这些点做另一条直线的垂线,用刻度尺量一量这些垂线段的长度。你发现了什么规律?在这一探究学习过程中,教师应指导学生反复的思考和交流,得出正确结论,万不可急于告诉结论
在“平行四边形的特征”教学中,教师若先让学生先通过折纸(给每位学生一张长方形纸,裁剪成一个平行四边形)猜想平行四边形的特征,学生一旦提出猜想,就非常迫切地想知道自己的猜想是否正确,从而激发了学生自主学习和探究的热情。然后让学生开展小组讨论,最后把各组的结论汇总到黑板上。在此基础上,教师再指导学生修改、选择、补充,并一一加以验证,从而得出平行四边形的特征。这样学生通过自主研讨、自主分析,体验获取知识的过程,领悟数学中解决问题的方法。由此可见,教师引导,学生主动探索,积极思考,师生合作,才能真正培养和发展学生的能力。
学习了相似三角形和函数等知识后,测量建筑物或树的高度,是一个典型的实践性探究作业。教师可以提出这样的问题:怎样测量校园里的一棵树的高度?试针对各种不同的实际情况,设计不同的测量方法。每人设计测量的具体方案,然后分四人小组讨论交流,把本小组的各种设想进行汇总和整理,再选择几种典型的解答在全班介绍。这样一来学生积极性很高,想到了许多老师不曾想到的问题,如天气好可利用影子长与树高的关系计算,部分影子被房屋挡住怎么办?没太阳光树的顶部或底部又不能直接到达咋办……学生运用相似三角形的比例关系及三角函数的计算等等方法。
又如学习了多边形内角和定理后,让学生利用一种或几种地砖,设计一幅美丽的地板图案。学校建了新校舍,要在长100米,宽80米的矩形空地上建造一个花园,要求绿化面积是空地的一半,请为学校展示你的设计。这些例子很多,不同水平的学生都可以参与,充分发挥自己的想象力和水平,按照自己的思考设计方案,真正做到自主创新,实施素质教育。
总之开展探究性学习,不仅是为了适应当前中学课程改革中产生的研究性课程教学的需要,更重要的是为培养学生的创新精神和实践能力,真正实现素质教育的需要。因为在探究性学习过程中,学生要自己发现问题,通过实践操作,体验感悟,合作交流,创造性地解决问题。,在初中数学教学中开展探究性学习,是新世纪数学改革的一个重大举措,是时代发展的需要,是我们数学教师面临的一次机遇与挑战。探究性学习还存在许多问题值得我们去思考,需要我们在教学实践中不断探索完善。
|
|
|
|